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Abstract 

Blockchain, the foundation for Bitcoin, has gained lots of attention recently. Blockchain works 

as a distributed ledger technology that allows information exchange to take place in a distributed 

way, and ledger is immutable. Blockchain database removes the necessity of the centralized 

system; therefore, applications based on Blockchain are getting high in number. This paper 

covers an discuss in detail of blockchain technology, and its consensus algorithms along with 

workflow, how trust has will be upon a system having no centralized system. This paper also 

studies various frameworks being built upon the blockchain systems and how they are helpful in 

solving many organizational issues and Developing of an application on an existing blockchain 

framework which is an access based system, has information regarding academic records, 

certifications and eligibility requirement examination records belong to a person, who can share 

with any organization, eliminating the need of physical documents. 
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Chapter I: Introduction 

This study investigates the current challenges, feasibility, benefits, and risks of working 

with blockchain technology in the educational certification system. Certificates act as proof for a 

student when reaching out to education and employment companies, which play a crucial role in 

a person’s professional career. Therefore availability and immutability are important aspects 

here. 

Blockchain technology offers us these characteristics. It helps us to store information 

where all the history will be maintained, and all the data stored in it is secure, transparent, 

immutable in every way. Until today, whenever a person graduated from any university, did any 

certification from a private institution has been receiving the certificates in a physical format, 

and this certification process is not digitized. In this paper, the application of blockchain 

technology on issuing, maintaining, monitoring, and verification of certificates by surveying 

most popular blockchain concepts, such as Ethereum and Hyperledger Fabric. 

Process automation is taken care of, by the concept of smart contracts, which runs on a 

blockchain. This application will represent digital certificates for paper certificates, and their 

digital fingerprints stored on the blockchain, and Since the architecture is self-maintaining and 

open-source, It will be a great application added to the network. 

Problem Statement 

 Every school/university around has its way of managing or maintaining its student 

records and transcripts. Of course, many of them usually do not share student information, such 

as transcripts for privacy reasons. Typically, in the case of international students, when one 

student tries for an admission in a foreign country, the student must get his transcripts evaluated 

by a third-party evaluator such as WES, an International evaluator.  
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For one reason, if somehow these transcripts are in a foreign language, there needs a 

translator and, most of the time requires to approach a third-party evaluator. When a person had 

started applying for a university in the United States, The university required him to first apply 

all the transcripts from his school and then had them evaluate through an external evaluator to 

match the grading system between the two countries, and it takes an average of 2-3 weeks to get 

the evaluation report. Table 1 is the third-party evaluator's cost summary. 

 So, a cryptographic database solution for recording the academic certificates will help to 

solve all these issues. By making all the official and unofficial transcripts of the student store in a 

blockchain, which are accessible through all over the world and can share to any Employer or a 

University And the transcripts stored on a blockchain system are immutable, therefore preserves 

the integrity of data. 
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Table 1: Academic transcript evaluation list 

 

  



11 
 

Nature and Significance of the Problem 

Axact from Pakistan and University Degree Program (UDP) run by an American in 

Romania—have accounted for many hundreds of thousands of sales to Americans, and 

that is just the tip of the iceberg. More than half of all new PhDs in the U.S. each year 

are fake. (Gibson, 2017) 

 

Academic transcripts are being generated falsely, and many agencies are producing false 

documents. Due to the lack of proper verification systems, many physical documents are being 

forged and are being distributed. On taking account of these issues, I would like to state that the 

need to develop a global system which is a trusted, tamper-proof system. 

Objective of the Study 

 To develop an application on a blockchain framework, which is a role-based access 

system, takes inputs and stores all the changes performed on it, which supports an authentication 

system and high scalability. 

Study Questions/Hypotheses 

1. Is there a better framework other than HLF to develop this framework? 

2. Cryptographic network, Is it secure enough? 

3. How stable will be the network in handling upgrades and significant development 

changes? 

Limitations of the Study 

 Since the cryptocurrency networks are still under development, a new framework or 

application based on blockchain technology is coming on to light/deployed every day. There is a 

deficient number of successful applications, and in turn, very few peer-reviewed articles 

available. Furthermore, a few of these frameworks require a new programming language to work 

on them. 
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Definition of Terms 

A Distributed Ledger is one of the different types of data storage methods, which is 

shared and distributed between the participants of the decentralized network. This network can 

store transactions such as currency, property information, and any data that can be converted to 

bytes.  

Blockchain is a distributed network of peer, where users can be participants and can work 

on complex algorithms to confirm the transactions.  

Ethereum is an open software platform based on blockchain technology that enables 

developers to build and deploy decentralized applications (Higgins, 2017). 

Hyperledger Fabric is a permissioned distributed blockchain infrastructure, initially 

contributed by IBM and hosted by Linux Foundation, It brings elements of confidentiality, 

privacy, and trust. It is an extensive scalable system that supports smart contracts. 

Summary 

 This chapter discusses the basic introduction of the sudden hype of cryptocurrencies, how 

it can help develop cost-effective solutions.  It talks about what the research is about and what 

are the limitations to it. The next chapter helps to understand more about blockchain 

technology’s workflow and its frameworks in more detail. 
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Chapter II: Background and Review of Literature 

Introduction  

 In this chapter, we are interested in different mechanisms, taxonomy, and various 

applications of blockchain technology. This chapter also deals with in detail explanation of 

blockchain frameworks which are, Ethereum and Hyperledger Fabric. This chapter also talks 

about the literature that we had previous literature related to the research area and provides an 

opinion about those works. 

Background Related to the Problem 

 A Distributed Ledger is a technical implementation of a kind of data storage system, 

which has a distributed nature; all the peers in the network hold onto a copy of the ledger or in 

some cases, a partial copy of the ledger. This network can handle transactions supported by 

Proof of Work and consensus mechanisms. 

Decentralization is a crucial concept in blockchain implementation. With this technology, 

many people can write records into this decentralized database, and a community of an honest 

user will control the record of information into the Distributed ledger. All the records write on to 

a ledger will be distributed among its nodes, and Every node is continuously updating the copy 

of the ledger on their database.  

Blockchain helps store information about transactions in a distributed implementation. 

Some computers in the network are called nodes. They own a full copy of the blockchain. There 

will not be a central authority to distribute the information to the nodes. Overall, A distributed 

ledger is a database held and updated independently by each node in a network. The information 

will get distributed uniquely. The information is maintained and distributed by every 

participating node in the network. 
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Figure 1: Bitcoin as Blockchain 2.0 (Stevens, 2018) 

Each node/stakeholder in the network function as per consensus, which will be specific to 

each network, which they agree on without any third-party interference. Consensus in the 

network is what brings in trust among the nodes. Every record in the distributed ledger consists 

of a timestamp, hash value of corresponding transactions, and a unique signature, which makes 

the transactions immutable in the ledger. 

Blockchain is a decentralized network which connects multiple nodes, and the peers in 

the network manage all the transaction on the ledger.  

How Blockchain works on a distributed ledger. Blockchain stores information about 

transactions in a distributed manner. Some computers in the network are called nodes, and they 

own a full copy of the blockchain. There will not be a central authority to distribute the 

information to the nodes. Figure 2 explains how a blockchain system and its potential 

applications. A distributed ledger is a database hosted and updated by each node in a network. 

The information distribution among the nodes is unique.  
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Figure 2: Overview of Blockchain technology (Stevens, 2018). 

Types of Blockchain. Blockchain is a chain of blocks, a chained ledger that holds the list 

of transactional data. The specific term for the first block in the chain is Genesis Block. A 

Genesis block will not have any parent blocks, as shown in Figure 3. 

 

Figure 3: Merkle root hash generation from transactional hashes (Hong, Wang, Cai, & Leung, 

2017) 
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Block, as shown in Figure 4, has Block Header and body. Block header is an 80-byte 

long string and carries the essential information that helps in maintaining consistency and 

immutability of the chain. 

1. A 4-byte long Block version. 

2. A 32-byte long Merkle root has the hash of all the transactions combined in a block 

3. A 4-byte timestamp of the block which helps in avoiding double spending 

4. 4-byte long difficulty target for the block, this POW difficulty index is calculated by 

averaging transfer rate. If the blocks are processing with high velocity, the difficulty 

should increase proportionally. The framework is set to handle the difficulty 

intelligently. 

 

Figure 4: Structure of a block (Hong et al., 2017). 

 

https://www.investopedia.com/terms/d/difficulty-cryptocurrencies.asp
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5. Nonce is a 4-Byte field, which is a random string that needs to be generated using 

trial and error method, which should be appended to the hash of the current header so 

that the hash meets the difficulty requirements. 

6. Parent block hash is a 256-bit and is the hash value calculated for the previous block, 

Thus forming a chain of transactional blocks. 

The body of the block mainly consists of transaction counter and transactions. The size of 

each constituting block will affect the total number of transactions that can be held on a block. 

Cryptography in Blockchain. The concept of Cryptography is the backbone of the 

blockchain. Blockchain uses public-key cryptography, It has a public key and private key to 

perform tasks. Public keys, as the name suggests, are distributed, whereas the private key should 

be personal to a user. 

 One can encrypt information using a person’s public key, which can only be reversed to 

its original state, in technical terms, decrypted by using the corresponding private key. This 

public-private key encryption method brings in the concept of Data integrity, which means 

verifying that the data reached its destination unharmed and uncorrupted. So, using the private 

key, a digital signature can be generated so that with the respective public key associated with 

that, anyone can verify the integrity of the data over the network.  
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Figure 5: Key-based asymmetric algorithm. 

 A Hashing algorithm has a significant place in the cryptography, A hashing algorithm 

applied to an input of any size results in a fixed-length output, depending on the hashing function 

used. Any hash function divides the input into blocks of a certain length and process them using 

several mathematical functions and produces a hash result/ hash digest. 

 Since the input data is divided up and each block is processed one at a time, the output of 

one block’s hash digest is carried forward into the next one and the algorithm process it, thus the 

output will be the of the combined value of all the inputs, this way if somehow one bit of data 

changes the hash digest will be an entirely different value, This phenomenon is known as the 

Avalanche effect. 

 

Figure 6: Hash algorithm comparison. 
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An encryption algorithm, when applied to the information, which was supposed to be 

input for a proposal, and is signed using the private key, and Its respective key which is being 

shared up over the network, can help in verifying the integrity of the data received. This secure 

method ensures that every transaction can be easily verifiable and logged. As long as the private 

key is secure, none of the transactions are tied to anyone. The digitally signed transactions are 

distributed all over the network.  

Every user who participates in the blockchain network with the generated address never 

has to reveal his identity. Consensus algorithms in blockchain ensure the data consistency is the 

P2P network. 

Hashing function has two unique properties, 

1. It is a one-way function, 

2. Produces a fixed-length output.  

The mathematical functions applied for the hashing function make sure that the input 

never be will be generated from the hash digest. That is the reason why Hash digest technical 

term is digital fingerprint of the data processed through the hashing algorithm. 

Moreover, the same input must always produce the same result. It should not produce a 

different hash digest. Restoring input from the hash digest is a lost cause; there should be no way 

to break the mathematical hashing process to see the original input. 

Even a small change in the input should affect an entirely different hash digest, even 

changing the case of a character in the string should alter the hash digest. Moreover, most 

importantly, the hash digest should always be of a fixed size. And this entire process of 

producing the hash digest should use minimal computational power. 
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Any hash function should be one way and collision-resistant, which makes them an 

essential application for password protection and digital signatures.  

The existing most popular hashing algorithms MD-4 and MD-5 produces hash values of 

length 128 bits, and SHA-1 results in a 160-bit hash digest, which means in case of collision 

attacks, these algorithms cannot provide security for more than 64 and 80 bits respectively. So, to 

improve security, the goal is to use better algorithms to prevent these collision attacks, AES 

offers in three crypto variable sizes of 256, 384, and 512. SHA- 265 is supposed to provide 128-

bits of security against the collision attacks. 

Table 2: Cryptocurrencies and hashing algorithms. 
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The hashing algorithm we are using for this research will be SHA-256, which is the 

algorithm used for bitcoin as listed in Table 2.  

The steps involved in the SHA-256 hash algorithm are, the message in action here is first 

padded within its length of 512, which is a message M with right padding and then parsed into 

blocks M(1); M(2) ……M(N). 

Each block gets prepared and used at one time, and the result of one stage gets passed 

into the next stage,  

 

Where C is the algorithms compression function. The final results will be the hash of the 

given message. 

SHA-256 compression function acts on 512-bit message blocks and 256-bit hash 

intermediate values; it is a 256-bit cipher algorithm which will encrypt the intermediate hashes 

by using the 512-bit message strings. The initial hash values are the square roots of the first eight 

prime numbers 

 

The hash function compression function shown in Figure 7. 
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Figure 7: jth step of the compression function C. 

The input blocks of message schedule W gets passed, one after the other, the function 

represented below as a graph. The input blocks get shuffled as shown in Figure-8, and the shuffle 

function takes inputs as Wi(t), and the message schedule input block wi(t) and outputs a hash 

ωⁱ(t+1). 

 

Figure 8: Shuffling the blocks (Madeira, 2019). 
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POW in blockchain is a consensus algorithm, which requires exceptionally high 

processing power and is very time consuming to produce a piece of data. This theoretical concept 

helps systems, ensure that security, integrity, and consensus throughout the blockchain network. 

However, advantageous in helping quick verification of the solution. Hash cash is a POW 

algorithm for Bitcoin. For a network to arrive at consensus, it performs proof-of-work on its 

transactions block. 

When peers mine a block, it should satisfy consensus. So, the miners in the network 

needs to complete the POW to verify all the transactions in a given block. The difficulty set by 

the consensus will not be the same all the time. It varies every time so that new blocks are in for 

processing every 10 minutes, as shown in Figures 9.  

 

Figure 9: Mining a block of transaction (Kumar, 2018). 

Expected is that many of the miners try to perform proof of work on a given set of 

transactions and add the block to the network. Nevertheless, given the complexity, there is a very 

low probability of being successful, so it is almost impossible to predict which miner will 
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complete the Proof of work algorithm on the block of transactions and add the computed block to 

the ledgers. 

 To Calculate the hash value, a miner needs to start hashing out each of the transactions 

using the SHA-256 algorithm. The order of fields for transaction hashing is version number, then 

comes in input counter, list of inputs, output counter, list of outputs, lock time. The order of 

fields for inputs is a previous transaction hash, output index, input script length, a sequence 

number. When the miner was done calculating the hash of all these transactions, then hash 

Merkle root should be calculated. 

 To calculate Merkle root hash, Start with each pair of adjacent transactions are grouped 

and computed hash to create an upper-level hash value, every pair of transactions gets processed 

like explained, and then secondly, two adjacent upper-level hashes are combined and are hash 

out until It generates a unique Merkle root hash. In case someone tries to modify a single bit in a 

transaction, due to this algorithm, the Hash Merkle root changes and changes help in identifying 

the change.  

After obtaining the unique hash Merkle root for the transactions, the block header can be 

hashed to get the final block hash. To calculate the block hash, the order of fields is version, 

earlier computed block hash, hash Merkle root, time, target, nonce. These required fields need to 

be put together and are hashed twice to get the final hash of the block of transactions.  

A node/miner compiles all the proposals broadcast in the network and verifies all these 

proposals by digital signatures associated with them. Then the miner puts all the transactional 

records together and calculates the hash along with the unique hash Merkle root  which makes 

sure its total hash be less than the target hash, 

H (N, P_Hash, Merkle_Root) < Difficulty 
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Where N refers to nonce variable,  

P_Hash is the hash value of the block mined earlier to this,  

This calculation can be achieved by altering nonce, starting with value 0, and 

incrementing it every time and recalculate the hash until the total hash is less than that of the 

target hash. And then, when achieved, the node/miner will broadcast this block onto the network. 

When a node receives a first block in the network, it will verify all the transactions in the block 

and will verify the hash value of the block. 

Hyperledger Fabric is a permissioned distributed blockchain infrastructure, initially 

contributed by IBM and hosted by Linux Foundation, It brings elements of confidentiality, 

privacy, and trust. It is an extensive scalable system that supports smart contracts. To improve 

cross-industry blockchain technologies, the Hyperledger project hosted by Linux Foundation has 

developed an HLF framework. HLF possesses some unique characteristics which will help speed 

up the blockchain adoption. Unlike Ethereum, Developing smart contracts can use programming 

languages such as Node.js, Java, or Python. 

Moreover, the consensus protocol can be swapped depending upon the organizational 

requirements. Furthermore, It enables TLS communication between the participants of the 

network. 

 A Hyperledger Fabric architecture also offers the security of channels, meaning that a 

different ledger can for different channels, which can store different types of records. This 

framework can be tuned to business requirements and does not need to establish a 

cryptocurrency. The HLF ledger has the following core components, Certificate authority (MSP), 

Chaincode Containers, nodes/peers, Ordering service, Channels, and Shared Ledger, as shown in 

Figure 10. 
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Figure 10: Hyperledger fabric architecture (Sean, 2017). 

When a user enrolls into The network through MSP (Membership service provider) and 

submits a proposed transaction to the endorsing peer, the peer executes the chain code (smart 

contract), endorses it, and returns the transaction to the user/client. The user then submits the 

proposal to the orderer. Orderer is the automated service that bundles in all transactions. The 

orderer service verifies the received transaction and adds this transaction along with other 

transactions, sorts the transactions, and creates a block of transactions. Then the peers validate 

the transaction in the returned block and commit the ordered block to the ledger.  

 Membership service provider (MSP) is a Certificate authority, which provides 

authentication, registration, and certificate generation services to its users. A Membership service 

provider also generates a public key/Private key pair for its members. Each member of the 

network should present a digital certificate to join the HLF network. MSP will create these 

certificates for all its members in the network. 



27 
 

 Chaincode is a smart contract that can be installed on a peer and is used to handle the data 

on the ledger, This programming language can be written in python, Java or node.js, to handle 

the consensus agreed upon by users, when a user requested a transaction, a chain code is written 

to make sure the proposal meets all its constraints, A chain code can invoke to query the ledger 

in the database or to invoke other chain codes, with appropriate permissions. 

 The HLF network supports multiple channels/ledgers to avoid data exchange. A channel 

acts as a messenger as in, all the users belonging to that channel will be able to see the messages 

in that channel. HLF allows users to be part of multiple channels, but cross-communication 

between the channels is not possible. Thus Channels add up an extra layer of security to the HLF 

architecture. Ledger/Blockchain is a place to maintain all the transactions local to a channel. It 

should be tamper-proof (The records in the ledger are immutable). It should be storing all the 

transactions as well as the successful and unsuccessful transactional logs. HLF also has a 

database system that stores the current state of the system, and termed as the World State 

database; this will store the current or most recent state of all the channels in the network. The 

World State database will store the most recent state of all the channels, whereas Transactional 

log stores all the transactions that happened till date. World State database's primary purpose is 

for query performance optimization, instead of working through all the transactional log, we can 

get the most recent state of all the channels through the World State database.  

 Nodes host both the ledgers and chaincode; MSP authenticates any user or peer in the 

network and can be of either of these endorsing, ordering, or committing peers. 

As explained earlier in the transaction flow, each peer has bear responsibility in each phase. 

Initially, when a user sends a transactional proposal to the endorser. An endorsing peer 

will validate the proposal. A transaction that is valid/legitimate should achieve enough 
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endorsements from the network. Each endorsing peer runs the chain code on the proposal and 

generate a response and endorse it by digitally signing the response.  

Therefore, the response from the endorsing peer is a digitally signed response from the 

chain code, which makes it tamper-proof. Then the endorsing peer sends the response back to the 

client. The client then will create a transaction message by putting together all the responses 

from the endorsing peers. The constraint for the transaction message is that the proposal needs 

endorsements from more than fifty percent of the peers.  

An ordering peer is the which collects all the transaction messages from the client. A 

transaction message is the one which is a bundle of all the digitally signed responses from the 

endorsing peers. The ordering peers collect these transaction messages from all the channels, 

chronologically sorts them, and bundles them all together into blocks. Each block is a list of 

transactions ordered in chronological order grouped by channel. The ordering service then sends 

the block to the leader peer of each channel.  

The committing peer only hosts a leger; it does not host chain code like the endorsing 

peer, This means the committing peer cannot be an endorsing peer, but an endorsing peer can 

always be a committing peer.  When the committing peer receives the block of transactions from 

the ordering peer, each peer independently validates all the transactions and check if all the 

transactions satisfy the endorsement policy. Then they will update all the valid and invalid 

transactions into the ledger, which is a distributed database among the network. The invalid 

transaction will help in identifying troubling peers.  

A protocol called Gossip protocol used in HLF to share the workload between the 

participating nodes. An online peer always broadcast alive signal to all other peers making them 
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know that it is available. If a peer stops sending in the alive signal, it will be considered dead and 

will get its membership revoked from the channel.  

Moreover, peers in the network can either elect their Anchor peer to communicate with 

the ordering service to get the block of a transaction of the channel. An Anchor peer can also 

communicate with an anchor peer of another organization. This node takes the responsibility of 

propagating the received blocks to the nodes in the channel.  

The ordering service forwards the block of transactions only to the leader of the peer to 

save the bandwidth. A leader can either be selected by the administrator or by a dynamic voting 

among the nodes, where voting happens at regular intervals of time. 

Literature Related to the Problem 

In Mukhopadhyay, Skjellum, and Hambolu’s (2017) paper “A Brief Survey of 

Cryptocurrency Systems”, the authors have discussed the underlying blockchain architecture and 

how the initial models faced the privacy and security issues and also explained how the recent 

developments on this technology are supporting the business models. The paper talks about the 

basic structure of the bitcoin block, the Genesis block, and how the links between the blocks will 

happen at a very high level. The paper also discusses different consensus mechanisms and 

hashing algorithms in various cryptocurrencies. 

In Chen, Xu, and Lu’s (2018) paper “Exploring blockchain technology and its potential 

applications for education”, the authors researched a lot of cryptocurrencies and their potential. 

This paper also lists out many advantages of adopting the blockchain technologies over 

traditional methods. This article also introduced the features and advantages of blockchain 

technology following by exploring some of the current blockchain applications for education. 

This paper also talks about how blockchain technology can help reduce the degree fraud, and 
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how the blockchain can validate a person’s certificates. This paper also talks about various future 

innovative ideas that blockchain can help revolutionize the field of education. 

In Ark’s (2018) paper “20 Ways Blockchain Will Transform (Okay, May Improve) 

Education” article, the author had discussed various industrial applications of blockchain and 

explained about various frameworks under development for industrial applications. This article 

also listed out various industries which are trying to develop innovative solutions based on 

blockchain frameworks. 

In Cachin’s (2016) paper on “Architecture of the Hyperledger Blockchain Fabric”, the 

author has discussed about the underlying architecture of Hyperledger Fabric framework. 

Furthermore, it discusses how a permissioned based model of blockchain can control who 

participates invalidation, and the protocol helps in building industrial models. This paper also 

discusses different consensus protocols that can be employed depending on the industrial 

structure. 

Literature Related to the Methodology  

 In Gräther et al.’s (2018) paper “Blockchain for Education: Lifelong Learning Passport”, 

the author had discussed the importance of certificates in a person’s personal and professional 

career. The author also describes the conceptual system overview and then presents in detail the 

platform implementation, including management of certification authorities and certificates, 

smart contracts as well as services for certifiers, learners, and third parties such as employer. In 

this implementation study, the author had proposed to build an application on the Ethereum 

framework (Gräther et al., 2018), which generates digital certificates and stores the document’s 

hash in the blockchain database, and any certificate can easily get verified against the hash value 
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in the database. This paper also documented with many user test cases to help testing the 

application. 

 In Valenta and Sandner’s (2017) paper about “Comparison of Ethereum, Hyperledger 

Fabric, and Corda”, the author has discussed about various frameworks built upon the blockchain 

database and mentioned advantages of one framework over the other. Also, in this paper, the 

author had discussed implementation projects being carried out on each framework.  

Summary  

 This chapter gives a detailed overview of a Distributed ledger Blockchain technology, 

and about cryptocurrencies which are actively in constant development on them and technology 

involved, such as Consensus, proof of work algorithms, encryption, taxonomy of blockchain 

systems and most importantly data mining methods in basic blockchain system, bitcoin and in 

Hyperledger Fabric framework. The next chapter covers the design of the approach to building 

up the solution. 
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Chapter III: Methodology 

Introduction  

 In this chapter, we will discuss in-depth about process to implement a HyperLedger 

fabric framework using a Linux machine and what are the steps to be taken to develop the 

application. Apart from we will be discussing hardware and software components needed to 

implement this. 

Design of the Study 

Designing of this implementation project requires the study of various frameworks and 

pre-designed models, which includes learning the new frameworks, development plan, and 

writing user test cases to deal with any issues that come up during the implementation. For this, a 

development environment with at least four nodes or participants. 

Designing the development network involves the following steps  

1.  Learn and understand all the execution examples of the Hyperledger Fabric 

Framework.  

2.  Try to analyze each algorithm and consensus mechanism in this framework. 

3.  Understand the different components of the framework and their roles.  

4.  Create and set up virtual machines where the nodes will live.  

5.  Install and configure the HLF system on a Linux machine with virtualization.  

6.  Make a test run inserting a few records to make sure that the implementation works.  

The design flow chart developed shown in the figure below; The HLF framework should be set 

up with a minimum of 4 nodes. As shown in Figure 11 use case, Workflow should be as follows, 

1. An instructor and student will be peers in the HLF network. 

2. The instructor will then send in a request to insert in a student marks/grade request. 
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3. Endorsing peers will then write a smart contract (Chaincode) on this record and moves 

this transaction to Ordering peer. 

 

Figure 11: Flowchart for implementing the certificate system.  

4. The ordering peer than validates all the proposals and sorts them out alphabetically, 

and then the block gets generated and forwarded to the committing peer. 

5. Committing peer then validates the received block from Orderer, commits the block 

onto ledger, which is immutable and tamper-free. 

Data Collection 

 The data required for this implementation is available and is accessible through various 

scientific journals and repositories. Since the tool used for this implementation is HyperLedger 

fabric, which is an open-source software developed by IBM. The data collection for this project 
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is going through project documentation and looking through various designed project templates 

in academic and scientific repositories. The research included going through various white 

papers, conference papers, various technical blog sites, and repositories to get the up to date 

information. 

Tools and Techniques  

 To implement the project, we need to get the Hyperledger fabric framework, which runs 

on the docker platform. Since we are developing a multi peer network using the architecture, 

docker helps us create containers for the peer and the corresponding services. Docker containers 

are lightweight alternatives for virtual machines.  

Docker containers need a Linux or Unix based host machines. Docker containers do not 

need a preallocated RAM or disc space. The containers dynamically use up RAM and disk space 

as required. Docker containers created by docker use the Host operating system as shown in  

Figure 12, 

 

Figure 12: Docker container (Orientation and setup, 2019). 
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The docker containers have applications running on them, and these containers hold the 

required information regarding these corresponding applications such as Binaries and libraries. 

So on top of a Host machine, there will be a docker engine, and there will be multiple containers 

running on the Docker engine. So the libraries and binary files local to each application will be 

stored locally in each container.  

 To work with the Hyperledger fabric architecture provided docker images and containers, 

the project implementation will be carried out on a Linux machine. In order to install a Ubuntu 

operating service, It needs a Virtual machine installer.  

A Virtual machine Installer such as VMware Workstation Player helps in running 

multiple operating systems on a single host machine. It enables the host user to set up multiple 

virtual machines with a guest operating system on a single host physical machine and run them 

simultaneously utilizing the host physical machine resources. VMware provides a complete 

virtual environment, i.e., a completely independent virtual hardware to the guest operating 

system. 

A user can work on work on the guest machine, pause and make a copy of the virtual 

machine and use a copy of the machine on any other host machine, which makes it highly 

portable. This feature will be useful in development projects such as this. 
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Figure 13: VMware workstation homepage. 

 For this project implementation, an Ubuntu 64 bit Operating system will support the 

cause, and VMware helps us in mounting up the Operating system.  

VMware allows users to set up system resources such as RAM and disk space for guest 

Operating systems since the project setup is a multi-peer network and requires much 

computational power, a three GB RAM, and 20 GB disk space, leaving the rest as defaults as 

shown in Figure 14. 
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Figure 14: Virtual machine settings. 

 The next step is installing the operating system on the machine, which involves setting up 

the user and login details for Ubuntu OS, as explained below in Figure 15. Then the VMware 

software initializes the user details on the machine and boots up the operating system on the host 

physical device. 
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Figure 15: Virtual machine setup. 

Then the VMware software initializes the user details on the machine and boots up the 

operating system on the host physical device. VMware Player will boot up the machine, 

configure all the hardware components required, and Initialises the operating system with 

defaults, as shown below in Figure 16; this may take a while and mostly depends upon the 

version. 

 

Figure 16: Ubuntu installation screen. 
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Once the Virtual machine’s Operating system is up and running, log-in with the user 

credentials and Start to set up the Linux virtual machine ready to use HyperLedger fabric 

architecture. Open the terminal on the VM and Install CURL as a superuser using the following 

command. 

sudo apt-get install curl 

cURL is a handy command-line browser/tool or client URL library, and It is used to 

interact with servers using the command line. It helps in sending in data or extract data from 

servers. cURL allows users to upload/extract multiple files with a single command. Multiple 

URLs can be specified in a single command and are downloaded/uploaded into the server in the 

given order of the URL using the supported protocols. cURL tool will help in downloading 

Hyperledger fabric prebuild docker images that help in building up specific containers. 

 

Figure 17: cURL installation. 
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 Once the cURL tool installation finishes, as shown in Figure 17, we need to set up the Go 

Programming language in our Linux machine. Go programming language is one of the 

programming languages that Hyperledger fabric architecture supports. Go Programming 

language, also called Golang, is also an open-source language launched by Google.  

sudo apt-get install golang-go 

Chaincode, which are smart contracts in this architecture, are written using the Go 

Programming language. Chaincode in Hyperledger fabric runs in a separate container, which 

makes it isolated and secure. Chaincode manages and updates ledger through requests submitted 

by peers in the network.  

The next step in the process is installing docker in our guest machine. We can run the 

command below in terminal and pass the password when invoked, to install it as shown in  

Figure 18.  

sudo apt-get install docker 

Command sudo command will run the command following it as a superuser and apt is a 

potent tool in ubuntu, which refers to the Application Packaging Tool, which means it handles all 

installations in Ubuntu machine such as new software package installation, upgrading of existing 

installed software and delete any software packages.  
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Figure 18: Docker installation. 

Running this command in the terminal will install Community Edition of docker. After 

the successful installation of the Docker community edition. We need to install another package 

of docker, which is docker-compose.  

sudo apt-get install -y docker-ce 

Docker-compose is a potent tool in docker, which allows users to create containers using 

existing docker images or software packages installed in the machine. Figure 19 shown that the 

community edition of Docker has installed completely.  

sudo apt-get install docker-compose 

Docker-compose uses configuration files to generate docker containers for applications 

and can generate multiple containers. We use a YAML file to compose all the configurations of a 

container.  
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Figure 19: Docker community edition installation on VM. 

 Once all the docker related packages are downloaded and installed in the Linux machine. 

The following command upgrades all the existing software packages and gets the system updated 

for Hyperledger fabric docker images. 

sudo apt-get upgrade 

 When the system upgrade with the latest software patches finishes, let us use cURL to get 

the Hyperledger fabric binaries and Docker images. To do this, the user creates a directory and 

open terminal in that folder and execute the following command. 

curl -sSL http://bit.ly/2ysbOFE | bash -s 
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Figure 20: Cloning in all Hyperledger fabric docker images. 

Figure 20 shows that, when the command executes, the cURL tool copies all the files 

available on the website and clones a copy in our local folder. The cloned copy also contains 

come templates, which will be useful for reference. 

 

Figure 21: Cloned copies in VM. 
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Figure 21 shows how the cURL tool managed to clone in all the files and directories from 

the URL on to the directory specified above. 

Moreover, in this folder chain code, there are sample chain code templates written in 

golang and java. Different prebuilt hyper ledger projects such as byfn, basic network, and fabcar 

are provided as templates for reference. The binaries that the tool downloaded are in the bin folder.  

Cryptogen tool is one of the docker image command-line interface tools provided. It is 

used to pre-configuration of the network in development environments. Cryptogen tool works on 

a YAML file and generates a list of certificates for the entities listed in the YAML file.  

 

Figure 22: Docker images provided by Hyperledger fabric architecture. 

Figure 22 shows the prebuilt docker images provided by Hyperledger fabric, which will 

be tools helpful for this project. The YAML file with network and peer configurations are 

available in crypto-config.yaml. The cryptogen tool use this YAML file and generate 

membership certificates. The command to generate certificates is  
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./cryptogen generate --config=./crypto-config.yaml 

Furthermore, here is a YAML file configuration; it has the following important things listed in 

the YAML file, Orderer and its domain; peer organizations, and their domains. Below is the 

YAML configurations for this network. 

OrdererOrgs: 

- Name: orderer 

Domain: etranscripts.com 

EnableNodeOUs: true 

Specs: 

- Hostname: orderer 

PeerOrgs: 

- Name: scsu 

Domain: scsu.minnstate.edu 

EnableNodeOUs: true 

Template: 

Count: 1 

Users: 

Count: 1 

 

- Name: umn 

Domain: umn.minnstate.edu 

EnableNodeOUs: true 

Template: 

Count: 1 

Users: 

Count: 1 

- Name: msu 

Domain: msu.minnstate.edu 

EnableNodeOUs: true 

Template: 

Count: 1 

Users: 

Count: 1 

- Name: bsu 

Domain: bsu.minnstate.edu 

EnableNodeOUs: true 

Template: 

Count: 1 

Users: 

Count: 1 

 

 Configtxgen tool is the next docker image provided by Hyperledger fabric; it also takes a 

YAML file and generates different channel level configuration files, as in genesis block 

configuration, channel configurations, and anchor peer configurations. Below here is a small 

snippet of code from YAML file  
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    eTranscriptsGenesis: 

        

         

Consortiums: 

            MinnStateUniv: 

                Organizations: 

                - *scsu 

                - *umn 

                - *msu 

                - *bsu 

    eTranscriptsChannel: 

        Consortium: MinnStateUniv 

        Application: 

            <<: *ApplicationDefaults 

            Organizations: 

                - *scsu 

                - *umn 

                - *msu 

                - *bsu 

            Capabilities: 

                <<: *ApplicationCapabilities 

 

And the command used to generate configuration files using the tool are,  

//genesis block configuration 

./configtxgen -profile eTranscriptsGenesis -outputBlock ./channel-

artifacts/genesis.block 

 

//channel configuration 

./configtxgen -profile eTranscriptsChannel -outputCreateChannelTx ./channel-

artifacts/channel.tx -channelID minnstate 

 

//Anchor peer configuration 

./configtxgen -profile eTranscriptsChannel -outputAnchorPeersUpdate 

./channel-artifacts/bsuMSPanchors.tx -channelID minnstate -asOrg scsuMSP 

 Now we need to use up other docker images from bin folders such as Orderer, peer, and 

Fabric-ca client from the bin folder with other docker specific configurations such as port 

addresses, MSPid, genesis file path, volumes for specifying the critical paths from local machine 

and others to bring up containers.  
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For this implementation project, a YAML file with configurations for Orderer, peers, 

CLI, CouchDB, and Certificate authorities (CA) is passed on to docker-compose command as, 

docker-compose -f docker-compose-org.yaml -f docker-compose-cli.yaml -f 

docker-compose-couch.yaml -f docker-compose-ca.yaml up 

The up command will create all requested containers listed in the YAML files. The 

sample configuration written for the Orderer is, 

orderer-base: 

    image: hyperledger/fabric-orderer:latest 

    environment: 

      - ORDERER_GENERAL_GENESISMETHOD=file 

      - FABRIC_LOGGING_SPEC=INFO 

      - ORDERER_GENERAL_LISTENADDRESS=0.0.0.0 

      - ORDERER_GENERAL_LOCALMSPID=ordererMSP 

 

      -ORDERER_GENERAL_GENESISFILE=/orderer/orderer.genesis.block //genesis 

block path 

      - CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=transcriptshlf_TranscriptsHLF 

      - ORDERER_GENERAL_TLS_ENABLED=true //TLS information 

      - ORDERER_GENERAL_TLS_PRIVATEKEYorderer/tls/server.key //TLS key for 

authentication  

- ORDERER_GENERAL_LOCALMSPDIR=/var/hyperledger/orderer/msp 

 

    working_dir:/opt/gopath/src/hyperledger/fabric//Orderer working directory 

    volumes: 

    - ../channel-

artifacts/genesis.block:/var/hyperledger/orderer/orderer.genesis.block  

    - ../crypto-

config/ordererOrganizations/etranscripts.com/orderers/orderer.etranscripts.co

m/msp:/var/hyperledger/orderer/msp 

    - ../crypto-

config/ordererOrganizations/etranscripts.com/orderers/orderer.etranscripts.co

m/tls:/var/hyperledger/orderer/tls 

    - orderer.etranscripts.com:/var/hyperledger/production/orderer 

    ports: 

      - 7050:7050 

command: orderer 

 

Below is a snippet of code written in Golang as Chaincode program in order to maintain 

data on ledger,  

func (c *CourseProcessor) Init(stub shim.ChaincodeStubInterface) pb.Response{ 
   return shim.Success(nil) 
} 
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func (c *CourseProcessor) Invoke(stub shim.ChaincodeStubInterface) pb.Response{ 
   function, args := stub.GetFunctionAndParameters() 
 
   if function == "submit-Scheme" { 
      return c.submitGradeScheme(stub, args) 
   } else if function == "initLedger" { 
      return c.initLedger(stub) 
   } else if function == "submit-grade" { 
      return c.submitGrades(stub, args) 
   } else if function == "query-grade-student" { 
      return c.getGrades(stub, args) 
   } 
 
   return shim.Error("Invalid Smart Contract function name.") 
} 
 
func (c *CourseProcessor) initLedger(stub shim.ChaincodeStubInterface)  pb.Response{ 
   return shim.Success(nil) 
} 

 

Summary 

This chapter deals with an in-depth discussion about how to implement a Hyperledger 

fabric application on a Linux machine and also gives detail about different software components 

and tools used for this implementation. It also gives a brief explanation about different 

configurations and programming code used to give a high-level view of the implementation. 
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Chapter IV: Data Presentation and Analysis 

Introduction 

 This chapter deals with the analyzation of the results of implementation. In the previous 

chapter, we discussed various algorithms, tools, and various techniques used in the 

implementation. This section will discuss an in-depth analysis of data obtained from tools and 

screenshots related to the implementation and provides detailed information about the 

implementation and results obtained at various stages. 

Data Presentation 

 The Hyperledger fabric architecture was installed on a Linux machine (Ubuntu VM). The 

last chapter provided a walkthrough of the software setup, installations, and upgrades for 

architecture. Implementation of the blockchain architecture needs at least one orderer and peer. 

 

Figure 23: Generating Crypto materials. 

For this project, let us continue with a selection of one orderer and four peers. Figure 23 

shows that the cryptogen tool generated certificates to entities listed in the YAML file. This step 

is to get the certificates for TLS communication. TLS is Transport layer security, which provides 

an end to end communication security over a network using cryptographic protocols. TLS also 

supports Pre-shared keys and secure remote passwords. When cryptogen works on the YAML 
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file, which holds organizational information. It produces certificates, keys, and MSP information. 

The above screenshot command is to use the cryptogen tool and generate required certificates 

using the configuration file. As explained earlier, the configuration file has details about Orderer 

and four participating organizations.  

 

Figure 24: Folder structure of Crypto documents. 

As shown in Figure 24, Cryptogen works on this configuration and generates the folder 

tree structure. The Cryptogen tool was able to create keys related to a certificate authority and 

MSP certificates at an organizational level and also at the user level. 



51 
 

 

Figure 25: TLS certificate generated by the docker image. 

 Cryptogen can produce certificates for a user, Admin, and also for the organizational 

level. The above figure tells that certificate authority related to the orderer generates the 

certificate, and it has an expiry date and has digital fingerprints and also a version number. This 

certificate shown in Figure 25 acts as Digital Signature during TLS communication. It was 

generated for the Administrator for the organization specified. Similarly, the cryptogen tool 

generates TLS, MSP, and stored keys for initial implementation or development projects. 
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 Next, using the configtxgen tool will generate configuration material for the channel; the 

tool works on the corresponding YAML file and can generate channel configuration, which is 

useful in creating the channel using channel ID, and also starting up a genesis block which is the 

first block in the channel. It is a configuration block that initializes the orderer. Configtxgen will 

also be able to produce a configuration file for anchor peers, and Anchor peers are necessary in 

Hyperledger fabric, only these peers will be able to communicate with an anchor peer of another 

organization. 

 

Figure 26: Channel artifacts generated by HLF docker image. 

 From Figure 26, the Configtxgen tool generated a folder with a genesis block 

configuration file, Channel Configuration file, and Anchor peer configurations. These files are 

used to update an existing channel configuration. 

 Moreover, we now need to create containers using docker-compose, Container for 

orderer, four organizational peers, four CLI containers for each organization, four CouchDB 

database containers, and four certificate authority containers, each representing one organization. 

We had already installed docker-compose in the previous chapter. The configuration files do 

have specified ports to each container and when the command executes,  
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Figure 27: Docker compose tool–containers and volumes. 

 Docker-compose works on the YAML files and create containers, volumes specified, and 

initiates the network as shown in Figure 27. The next thing is to check on the status of these 

containers; to do this, let us open a new terminal and run the command “docker ps -a” which 

gives all the docker containers running on top of docker. 

 

Figure 28: Docker containers. 
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 Figure 28 shows all the details regarding containers, Container ID is a unique ID created 

for the container, Image–is the docker prebuilt images used to create the specific container, 

Command–is the command used to get the container created, which is specified in the YAML 

files.  Created and Status gives information about whether the container is running or stopped 

due to some issues and finally most important information is the port ID’s, both internal and 

external port numbers are shown here, which are used to communicate with the container; for 

example, Orderer address from the above window is orderer.etranscripts.com:7050. 

 Once the peers are up, and the status of its containers are active. We should start working 

on creating a channel. A CLI container will work as an Interface for a peer to work on the 

network. To create a channel in the network, the user must be within the container. To do this, 

the user should open the terminal and enter command “docker exec -it scsucli bash”, This 

command will get the user into the container environment. Once the user is in the container, the 

following command will create a channel - ‘minnstate.’ In the command -f tag specifies the path 

to file, where the channel configuration is stored, --tls specifies the communication method, -o 

specifies the orderer information, --cafile specifies the TLS certificate path in the container and 

Figure 29 shows that upon executing the command, we are able to generate genesis block for the 

ledger. 

Command: “peer channel create -c minnstate -f channel-artifacts/channel.tx --tls -o 

orderer.etranscripts.com:7050 –cafile 

./crypto/ordererOrganizations/etranscripts.com/orderers/orderer.etranscripts.com/msp/tlscacerts/tlsca.

etranscripts.com-cert.pem” 
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Figure 29: Creating a channel in HLF network using CLI. 

The command Create channel requires TLS connection between peer and orderer, In 

order to do that, we pass the TLS certificate address in order to establish the connection between 

the peer and orderer, If the certificate looks valid, the connection between the endorser and the 

orderer will establish and channel creation will be successful and a ledger named minnstate.block 

will appear in the folder when user tries to fetch the latest block from the ledger, This can be 

performed using the following command. In the command -f tag specifies the path to file, where 

the channel configuration is stored, --tls specifies the communication method, -o specifies the 

orderer information, --cafile specifies the TLS certificate path in the container. 

Command: “peer channel fetch newest minnstate.block -c minnstate -o orderer.etranscripts.com:7050 --

tls --cafile 

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/etranscripts.com/or

derers/orderer.etranscripts.com/msp/tlscacerts/tlsca.etranscripts.com-cert.pem” 
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Figure 30: Genesis block. 

From Figure 30, it is to be observed that a block file has is obtained in the container; this 

action requires a TLS connection between the peer and the orderer; TLS connection is performed 

using –tls command and is initialized using the orderer admin certificate link. Moreover, the 

orderer address is supplied alongside the name of the channel. 

Once the peer fetches the newest block, then the peer can use the block file to join the 

ledger and channel; This can be performed using a simple join command from the container 

using the block fetched from ledger, as shown in Figure 31. 

 

Figure 31: Peer proposal to join channel. 
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This action of fetching the newest block from the channel and joining the channel is 

performed on all participating peers. Once all the peers join the channel, chain-code smart 

contracts are to be installed on to individual peers and instantiated on to the network. 

The chain code for this project is written in Go Programming language. It should contain 

methods Init, to initialize the smart contract on to network. Then other methods are to be 

included in invoke, which should manage the data on the ledger. Installing the chain-code on a 

peer requires the path of the code, name of the smart-contract, and version number, -v tag 

specifies the version the chaincode, -p tag specifies the path to the chaincode and -n specifies the 

name of the chaincode. 

Command: “peer chaincode install -n CourseProcessor -p github.com/chaincode -v 1.0” 

 

Figure 32: Installing chaincode on a peer. 

Figure 32 shows that the Peer has installed the chaincode on its ledger. All the 

participating peers can install the chaincode on top of their ledgers. Once the installation finishes, 

The chaincode needs to be initiated on the network; Initiating a chaincode can be done only 

once. Since initiating a chaincode is at the network level, communicating with orderer peers 

using TLS communication requires -o tag. , --tls specifies the communication method, -o 
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specifies the orderer information, --cafile specifies the TLS certificate path in the container and   

-v specifies the version of chaincode. 

Command: 

“peer chaincode instantiate -o orderer.etranscripts.com:7050 -n CourseProcessor -v 1.0 -C 

minnstate -c '{"Args":[]}' --tls --cafile 

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/etranscripts.com/or

derers/orderer.etranscripts.com/msp/tlscacerts/tlsca.etranscripts.com-cert.pem” 

 

Figure 33: Instantiating chaincode on network. 

Figure 33 shows that the instantiated chaincode on this channel is CourseProfessor and is 

of 1.0 version. 

Data Analysis 

 Instantiating the ledger on the current channel has generated a block. Using the CLI, we 

fetched the newest block on the ledger. 

 Figure 34 shows the basic structure of a block in a Blockchain. The extracted file has 

three sections; Data, Header, and Metadata. 

 The header section of the block has data_hash, which is a hash value calculated from all 

the transactions in the current block. 
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Figure 34: Structure of a block header. 

 Number refers to the current block number, and It is an integer, which starts at genesis 

block with value zero, and the blocks on the channels add up; it gets incremented by the value   

of 1. Previous_hash holds thee value of previous block hash value, and This is what brings in the 

chain structure for all the blocks.  

 The data section of the block shown in Figure 35 has details about the transactions 

bundled in order. Each transaction section has three portions, Which are Transaction proposal, 

Endorsements, and Proposal response. 

 

Figure 35: Structure of a block data -1. 
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 We can observe all the three portions in this block, chaincode_proposal_payload portion 

all the details about the proposal command submitted in the CLI; Such as name, path, version of 

chaincode, and arguments specified during instantiation in hash format and language of 

chaincode, In this case, it is two.  

 

Figure 36: Structure of a block data -2. 

 Proposal_response_payload portion of the transaction is shown in Figure 37 and has 

details about the details of the response of the transaction. It has related chaincode details and the 

response from the ledger and also the hash value calculated for the proposal submitted. 

 

Figure 37: Structure of a block data -3. 
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Finally,  the ‘Endorsement’ portion of the transaction; Which has details of endorser of 

this transaction, endorser ID, and his signature. In the last section, the block is metadata, which 

holds information related to the entire block, such as the time when the block is written onto 

ledger, certificate, keys, and signature of the block. 

 

Figure 38: Structure of a block data -4. 

Tested the system- without TLS settings on the network with TLS handshake enabled, 

and the CLI was not able to invoke the chaincode erroring out as Endorsement failure, as shown 

in Figure 39. 

 

Figure 39: Testing without TLS. 
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Summary  

 In this chapter, we had discussed about results of developing the architecture. We also 

looked at the results of running the application and in-depth documentation of implementing the 

architecture. This chapter also talks about troubles faced and how to overcome them during 

development. 
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Chapter V: Results, Conclusion, and Recommendations 

Introduction 

 This chapter discusses the overall summary of the results obtained from this 

implementation. We looked at the results of the application used to connect educational 

organizations to share sensitive information related to students. The project mainly focusses on 

developing a network for safe and secure communication without any middleware organizations 

to take care of data integrity and confidentiality. This chapter mainly focusses on concluding the 

entire study. This section also discusses about the future work that can be applied to the current 

system.  

Discussion and Results 

This research discusses in detail various cryptocurrency frameworks and architectures. 

Discussions and comparisons of the frameworks, starting with Etherueum, Ethereum manages a 

public blockchain, and It is just like a social network, any person who is willing to be part of the 

network can join and start doing transactions using smart contracts. Moreover, the Ethereum 

framework does not support multi-channel communication. This implementation can use 

Ethereum architecture, but it not suitable for this project. Whereas, an Hyperledger Fabric 

manages a permissioned blockchain. 

Furthermore, unlike Ethereum, which runs on Mining based on Proof of Work, which is 

managed by its participants, HLF architecture provides an Ordering service, which is an 

automated system that helps in maintaining consensus among the peers. Hyperledger Fabric is 

very scalable; it supports multiple programming languages and the ability to integrate 

components such as consensus algorithms and membership services, which issues and validates 

certificates. 
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Regarding the security provided by this architecture, Hyperledger Fabric bundles in TLS 

encryption and Membership Service providers for proper certificate handling. The data on the 

ledger is by default, encrypted by Hyperledger Fabric native encryption. Even communication 

between the peer requires a TLS, secure connection between the two nodes. Channels in 

Hyperledger Fabric adds up another layer of security, as even though a node is a member of the 

network cannot access any data If the node is not part of the channel. 

The network handled the upgrades as expected. It supports easy install of chaincode 

smart contract codes on nodes, and the command upgrade instantiates the installed chaincode on 

the network.  

This paper also dives into giving step by step details of developing an entire network of 

organizations using the architecture on a Linux based Virtual machine. This paper also discusses 

a structure of block with multiple transactions and how the structure helps in making the entire 

blockchain immutable. This paper also discusses how to implement a consensus mechanism and 

to bring in the ability to avoid middle man and how well the architecture is designed that it can 

take care of the transactions and consensus mechanism. By providing a ledger that nobody 

administers, these crypto blockchain systems with their strict consensus methods can handle any 

transactional data with trust and accuracy.  

Conclusion 

 This implementation study of Hyperledger fabric is to develop a network between the 

participating educational organizations; This is an open-source architecture that aims to develop 

distributed ledger applications. Since the application manages the ledger without any 

administering it, It needs to have a consensus algorithm, and to look at the blocks, the tool 
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generated and crypto algorithms it uses in the process makes the ledger immutable, and every 

transaction needs to be signed, verified and valid.  

Future Work 

 Currently, there are only a few stable releases for this architecture, the version that was 

used is the most up to dated and stable version of this opensource project hosted by the Linux 

Foundation. This architecture supports various plug and play services. Currently, able to use the 

project using the command-line interface. This project can be further improved by adding Nodejs 

and a UI with authentication services, which makes it easier for the end-user to work on the tool.  
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Appendix B: File crypto-config.yaml 

File crypto-config.yaml is created for the tool Cryptogen. It holds the data related to all 

participants of the network. Cryptogen tool uses the following YAML code and generates 

encryption keys and certificates. 

OrdererOrgs: 

  - Name: orderer 

    Domain: etranscripts.com 

    EnableNodeOUs: true 

    Specs: 

      - Hostname: orderer 

PeerOrgs: 

  # --------------------------------------------------------------------------- 

  # Scsu 

  # --------------------------------------------------------------------------- 

  - Name: scsu 

    Domain: scsu.minnstate.edu 

    EnableNodeOUs: true 

    # --------------------------------------------------------------------------- 

    Template: 

      Count: 1 

    Users: 

      Count: 1 

  - Name: umn 
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    Domain: umn.minnstate.edu 

    EnableNodeOUs: true 

    Template: 

      Count: 1 

    Users: 

      Count: 1 

 

  # Minnesota State University, Mankato:  

  - Name: msu 

    Domain: msu.minnstate.edu 

    EnableNodeOUs: true 

    Template: 

      Count: 1 

    Users: 

      Count: 1 

  # Bemidji State University: 

  - Name: bsu 

    Domain: bsu.minnstate.edu 

    EnableNodeOUs: true 

    Template: 

      Count: 1 

    Users: 

      Count: 1 



73 
 

  

Configtxgen tool uses file configtx.YAML, This file contain all the network related 

configurations such as Anchor peer configurations for Organizational peers, Channel information, 

ledger details and Orderer configurations. 

#################################################################### 

Section: Organizations 

##################################################################### 

Organizations: 

    - &OrdererOrg 

        Name: ordererOrg 

        ID: ordererMSP 

        MSPDir: crypto-config/ordererOrganizations/etranscripts.com/msp 

    - &scsu 

        Name: scsuMSP 

        ID: scsuMSP 

        MSPDir: crypto-config/peerOrganizations/scsu.minnstate.edu/msp 

        AnchorPeers: 

            - Host: peer0.scsu.minnstate.edu 

              Port: 7051 

    - &umn 

        Name: umnMSP 

        ID: umnMSP 

        MSPDir: crypto-config/peerOrganizations/umn.minnstate.edu/msp 
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        AnchorPeers: 

            - Host: peer0.umn.minnstate.edu 

              Port: 8051 

    - &msu 

        Name: msuMSP 

        ID: msuMSP 

        MSPDir: crypto-config/peerOrganizations/msu.minnstate.edu/msp 

        AnchorPeers: 

            - Host: peer0.msu.minnstate.edu 

              Port: 9051 

    - &bsu 

        Name: bsuMSP 

        ID: bsuMSP 

        MSPDir: crypto-config/peerOrganizations/bsu.minnstate.edu/msp 

        AnchorPeers: 

            - Host: peer0.bsu.minnstate.edu 

              Port: 10051 

Orderer: &OrdererDefaults 

    OrdererType: solo 

    Addresses: 

        - orderer.etranscripts.com:7050 

    BatchTimeout: 122s 

    BatchSize: 
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        MaxMessageCount: 9 

        AbsoluteMaxBytes: 9 MB 

        PreferredMaxBytes: 256 KB 

Profiles: 

    eTranscriptsGenesis: 

        Orderer: 

            <<: *OrdererDefaults 

            Organizations: 

                - *OrdererOrg 

            Capabilities: 

                <<: *OrdererCapabilities 

        Consortiums: 

            MinnStateUniv: 

                Organizations: 

                - *scsu 

                - *umn 

                - *msu 

                - *bsu 

    eTranscriptsChannel: 

        Consortium: MinnStateUniv 

        Application: 

            <<: *ApplicationDefaults 

            Organizations: 
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                - *scsu 

                - *umn 

                - *msu 

                - *bsu 

            Capabilities: 

                <<: *ApplicationCapabilities 

 

//chaincode for project 

 This chaincode file is to work with a ledger. This chaincode, after installed on a peer 

container, acts as a separate container. So when a request to submit a transaction on the ledger. 

The chaincode needs to be invoked, and the chaincode will query the ledger. The chaincode should 

have init, initiate methods, and other custom query methods. 

 

package main 

 

import ( 

 "encoding/json" 

 "fmt" 

 "github.com/hyperledger/fabric/core/chaincode/shim" 

 pb "github.com/hyperledger/fabric/protos/peer" 

 "strings" 

) 
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type OrgGrades struct { 

} 

 

type submitgrade struct { 

 ObjectType string `json:"docType"` 

 School     string `json:"school"` 

 Semester   string `json:"semester"` 

 Year       string    `json:"year"` 

 Course     string `json:"course"` 

 Grade      string `json:"grade"` 

 Name       string `json:"name"` 

} 

// 

=====================================================================

============== 

// Main 

// 

=====================================================================

============== 

func main() { 

 err := shim.Start(new(OrgGrades)) 

 if err != nil { 

  fmt.Printf("Error starting Simple chaincode: %s", err) 
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 } 

} 

 

// Init initializes chaincode 

// =========================== 

func (t *OrgGrades) Init(stub shim.ChaincodeStubInterface) pb.Response { 

 return shim.Success(nil) 

} 

 

// Invoke - 

// ======================================== 

func (t *OrgGrades) Invoke(stub shim.ChaincodeStubInterface) pb.Response { 

 function, args := stub.GetFunctionAndParameters() 

 fmt.Println("invoke is running " + function) 

 if function == "initGrade" { 

  return t.initGrade(stub, args) 

 }else if function == "readGrade" { 

  return t.readGrade(stub, args) 

 } 

 fmt.Println("Function not found for Invoke method: " + function)  

 return shim.Error("Received wrong function") 

} 

func (t *OrgGrades) initGrade(stub shim.ChaincodeStubInterface, args []string) pb.Response { 
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 var err error 

 

 if len(args) != 6 { 

  return shim.Error("Incorrect number of arguments. Expecting 6") 

 } 

 fmt.Println("- start init grade") 

 if len(args[0]) <= 0 { 

  return shim.Error("1st argument not supplied") 

 } 

 if len(args[1]) <= 0 { 

  return shim.Error("2nd argument not supplied ") 

 } 

 if len(args[2]) <= 0 { 

  return shim.Error("3rd argument not supplied ") 

 } 

 if len(args[3]) <= 0 { 

  return shim.Error("4th argument not supplied ") 

 } 

 if len(args[4]) <= 0 { 

  return shim.Error("5th argument not supplied ") 

 } 

 if len(args[5]) <= 0 { 

  return shim.Error("6th argument not supplied ") 
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 } 

 school := args[0] 

 semester := strings.ToLower(args[1]) 

 year := strings.ToLower(args[2]) 

 course := strings.ToLower(args[3]) 

 grade := strings.ToLower(args[4]) 

 name := strings.ToLower(args[5]) 

 nameAsBytes, err := stub.GetState(name) 

 if err != nil { 

  return shim.Error("Failed to get name: " + err.Error()) 

 } else if nameAsBytes != nil { 

  fmt.Println("This name already exists: " + name) 

  return shim.Error("This name already exists: " + name) 

 } 

 objectType := "submitgrade" 

 submitgrade := &submitgrade{objectType, school, semester, year, course,grade,name} 

 gradeJSONasBytes, err := json.Marshal(submitgrade) 

 if err != nil { 

  return shim.Error(err.Error()) 

 } 

 

 err = stub.PutState(name, gradeJSONasBytes) 

 if err != nil { 
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  return shim.Error(err.Error()) 

 } 

 

 indexName := "school~semester~year~course" 

 ssycIndexKey, err := stub.CreateCompositeKey(indexName, 

[]string{submitgrade.School, submitgrade.Semester,submitgrade.Year,submitgrade.Course}) 

 if err != nil { 

  return shim.Error(err.Error()) 

 } 

 value := []byte{0x00} 

 stub.PutState(ssycIndexKey, value) 

 fmt.Println("- end init name") 

 return shim.Success(nil) 

} 

 

 

func (t *OrgGrades) readGrade(stub shim.ChaincodeStubInterface, args []string) pb.Response { 

 var name, jsonResp string 

 var err error 

 

 if len(args) != 1 { 

  return shim.Error("Please check arguments. Expecting name of the student to 

query") 
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 } 

 

 name = args[0] 

 valAsbytes, err := stub.GetState(name)  

 if err != nil { 

  jsonResp = "{\"Error\":\"not able to check " + name + "\"}" 

  return shim.Error(jsonResp) 

 } else if valAsbytes == nil { 

  jsonResp = "{\"Error\":\"name does not exist: " + name + "\"}" 

  return shim.Error(jsonResp) 

 } 

 

 return shim.Success(valAsbytes) 

} 
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